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REGULARISED METHODS FOR HIGH-EFFICIENCY
PROPAGATION

Jacco Geul*, Erwin Mooij†, and Ron Noomen‡

Although regularised propagation methods have a good performance (accu-
racy versus evaluations), they suffer from a number of practical difficulties,
such as propagation to a fixed time, making them ill-suited for practical
applications. Several methods that address these limitations are proposed,
thoroughly discussed, and analysed on diverse test cases. Dromo outper-
forms the conventional propagation methods significantly. It is shown that
regularised methods, through some adaptations, can be successfully applied
to different orbit problems. The proposed method is recommended espe-
cially for computationally demanding problems.

INTRODUCTION

Numerical integration has become the standard for solving problems in orbital mechanics,
in favour of analytical and semi-analytical techniques [1]. Cowell’s method, however, has
the major drawback of being far less efficient, due to the many computations at intermediate
time steps. Regularised propagation methods offer a significant reduction in steps for the
same numerical accuracy [2, 3]. Through the transformation of the independent variable
and equations of motion (EOMs), the numerical and dynamical stability is improved.

Research in satellite orbit propagation is mainly focused on the modelling of different per-
turbations. These models present the dominant contribution in terms of accuracy. However,
these more advanced models come at a computational price. Especially when the propa-
gation of a large catalogue of objects is concerned, the computational efficiency becomes
crucial. Recently, regularisation methods have regained momentum [4–11].

Regularised methods, nonetheless, have only been scarcely adopted for solving real orbit
problems. This can likely be attributed to the more difficult implementation and practical
issues that arise from the transformations of the independent variable (i.e., time) and the
EOMs. Especially, propagating to a fixed time presents a major practical challenge for such
methods, as time has become a dependent variable through the time transformation. Sev-
eral solutions are proposed, thoroughly discussed, and analysed. The proposed solution are
implemented for Dromo [10], a specific regularised propagation method. Dromo features
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only eight EOMs (formulated as variations of parameters (VOP) elements) and a sepa-
rate treatment of perturbations that can and cannot be derived from a potential. Dromo
with the proposed adaptations is compared against two (standard) propagation methods,
namely Cowell’s method and Modified Equinoctial Elements (MEEs) [12]. The methods
are compared for a number of representative test cases.

The aim of the paper is to analyse how regularised methods compare to conventional
methods, when their practical limitations have been addressed, and to identify uses for
regularised methods. The focus is mainly on efficiency, defined as computational cost over
accuracy.

First, regularisation and the formulation of Dromo are first explained. Second, the
methodology of the proposed solutions is given. Thirds, the experimental set-up is ex-
plained, including the test approach, problems, and cases. Fourth, the results are presented
and discussed. Finally, the main conclusions and recommendations are given.

BACKGROUND

The theory of regularised propagation is introduced, after which the theory of Dromo
given.

Regularised propagation

Regularisation aims to remove singularities and dynamical instability from the EOMs,
leading to less integration errors and more efficient integration. It commonly follows a
two-step approach. First, a transformation of the independent variable is introduced. The
general form of this transformation is known as the Sundman transformation, as given by
Eq. (1). The relationship between the fictitious time 𝑠 and physical time 𝑡 is chosen such
that for a constant steps size ℎ = 𝛥𝑠, 𝑡 → 0 as 𝑟𝑚 → 0. Considering a highly eccentric
orbit, the step size will become very small at pericentre and very large at apocentre. Analytic
step-size regulation is achieved when the truncation becomes uniform at each time step.
Second, the EOMs are transformed into a more suitable set of parameters for describing
orbital motion, further improving the numerical properties [13].

d𝑠 = 𝐴 d𝑡
𝑟𝑚 (1)

where 𝐴 is a scaling factor and 𝑚 the order of the time transformation. The optimal
combination of 𝑚 and 𝐴 will depend on the type of orbit, integrator, and perturbations.

Additionally, the regularised EOMs can be reformulated through the theory of VOP. The
transformed parameters, referred to as (orbital) elements, are chosen such that they are
constant for idealised motion (e.g., two body). As the elements are constant (or linear) for
idealised motion, only the perturbations have to be integrated.

Dromo and comparison of regularised methods

Many different regularised methods exist. The most popular classical methods are Kustaanheimo-
Stiefel (KS) [14] and Sperling-Burdet (SB) [15]. Recently, there has been development
towards leaner methods that take advantage of quaternions [4–11]. In particular, Dromo
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seems very interesting and is a VOP method derived from the Burdet-Ferrándiz [16] reg-
ularization. Dromo employs only eight EOMs, which is close to non-regularised methods
(often six) and less than other regularised methods: Sperling-Burdett and Kustaanheimo-
Stiefel feature 12 and 10 differential equations, respectively [17]. Other important advan-
tages include: non-degenerate quaternions, perturbing accelerations in the orbital frame,
unique formulation for all perturbed conics, and a seperate treatment of perturbing forces
which are partially or fully derivable from a potential [10].

A number of classical and modern methods are compared in Table 1. Stiefel-Scheifele (SS)
represents the benchmark for this problem. The table reports the final position (𝑥, 𝑦, and
𝑧) after 288.127 689 41 mean solar days (roughly 50 revolutions), the number of steps per
revolution (steps/rev), and the absolute error with respect to the benchmark. Additional
results for Dromo, MEEs, and Cowell were obtained. The unified state model (USM) [18,
19] uses only seven ODEs (which can be reduced to six) based on the velocity hodograph
and quaternions.

Table 1: Comparison of several methods for the oblate Earth plus Moon after 288.12768941
days.

SS [3] SB [3] KS [3] Cowella [3]

𝑥 [km] −24 219.050 −24 218.818 −24 219.002 −24 182.152
𝑦 [km] 227 962.106 227 961.915 227 962.429 227 943.989
𝑧 [km] 129 753.442 129 753.343 129 753.822 129 744.270
Steps/rev 500 62 62 240
Error [km] 0.318 0.501 42.5

Dromo Cowellb MEE USM [19]

𝑥 [km] −24 218.829 −24 256.391 −24 256.980 −24 219.049
𝑦 [km] 227 961.980 227 980.068 227 979.117 227 962.106
𝑧 [km] 129 753.414 129 762.509 129 761.798 129 753.442
Steps/rev 113 453 188 372
Error [km] 0.256 42.4 42.4 42.1
a Note that Cowell’s method here indicates the formulation by Bond and Hanssen [20],
which uses the total energy as an independent parameter.
b Note that Cowell’s method here indicates the Cartesian formulation.

It can be seen that on the test problem, all regularised methods (SB, KS, and Dromo)
perform much better than the others. This is not at all surprising as the orbit is highly
eccentric. Dromo is found to be a bit more expensive than KS on this problem. This is
confirmed by Baù and Bombardelli [11], who further show that Dromo dominates the other
methods for problems with lower eccentricities (𝑒 = 0, 0.3, 0.7).

Dromo formulation

Dromo (derived from Greek, meaning: a running or race) was initially developed by
Peláez et al. [8]. Baù et al. [10] extended the method for a seperate treatment of perturbing
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forces which are derivable from a potential. A time element was finally introduced by Baù
and Bombardelli [11].

Dromo employs eight elements: three for orbital shape and motion in the orbital plane
𝜁1−3, four to describe the orientation 𝜁4−7, and one related to time 𝜁0.

Note that all quantaties in Dromo are non-dimensional, by introducing units for time and
length as 𝑛−1

0 and 𝑅0, respectively. Here 𝑅0 is the initial radius and 𝑛0 the initial circular
mean motion (i.e., 𝑛0 = 𝑛(𝑎 = 𝑅0) = √𝜇/𝑅3

0).

The perturbations are expressed in the orbital frame. This is convenient for many per-
turbations (e.g., drag, thrust, etc.). Moreover, perturbations derivable and non-derivable
from a potential are treated separately, allowing for propagation that is consistent with to-
tal energy. The total perturbing acceleration f is given by:

f = P + 𝑅 = P − ∂𝑅(𝑡, )
∂r𝑜𝑟𝑏

(2)

where P is the sum of all non-potential accelerations, 𝑅 the total perturbing potential, the
gradient operator, and r𝑜𝑟𝑏 represents the orthonormal basis {i, j, k}, given by { r

𝑟 , k×i, h
ℎ},

where the angular momentum is h = r × v. Similarly, the perturbing accelerations f and
P are composed of the radial, transverse, and normal components.

Time transformation The time is transformed from physical time 𝑡 to fictitious time 𝜑,
using a Sundmann time transformation of order two:

d𝑡
d𝜑

= 𝑟2

ℎ̃
= 1

𝜁3𝑠2 (3)

where 𝐴 = ℎ̃ and 𝑚 = 2. 𝜁3 and 𝑠 will be defined in the next section. The pseudo-angular
momentum ℎ̃ is defined as

ℎ̃ = 𝑟√2 (ℰ + 1
𝑟

) − (d𝑟
d𝑡

)
2

(4)

where ℰ is the total orbital energy and the relation between ℎ̃ and ℎ is ℎ̃ =
√

ℎ2 + 2𝑟2𝑅.
The independent variable 𝜑 can be considered as a perturbed version of the true anomaly

𝜈. and is, therefore, also referred to as the pseudo true-anomaly. 𝜑 varies linearly with 𝜈
with an additional angular drift 𝛾, such that 𝛥𝜑 = 𝛥𝜈 + 𝛾. 𝛾 is defined as:

𝛾 = 𝛥𝜔 +
𝛺

∫
𝛺0

cos 𝑖d𝛺 + 2
𝑡

∫
0

𝑅
ℎ̃ + ℎ

d𝑡 (5)

The numerical solution can be further improved by removing time 𝑡 also from the EOMs.
Looking at Eq. (3) it can be seen that even for unperturbed motion the physical time
does not necessarily vary linearly with respect to 𝜑. Due to the time transformation, the
problem has been partly moved to EOMs, giving rise to a number of complications. First,
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the integration of physical time leads to errors in approximating time itself. Second, large
variations of the time derivative can present a bottleneck, driving the integration accuracy
of the entire state. Lastly, the time accuracy directly influences the state accuracy when
the state at a certain epoch is desired.

Baù and Bombardelli [11] present two different alternative time formulations: the linear
and constant time elements. In total this gives three options for the expression of time.
These options will from hereon be referred to as non-dimensional physical time 𝑡, linear
time element 𝜁0𝑙

, and constant time element 𝜁0𝑐
.The relations between time 𝑡 and the time

elements 𝜁0𝑙
and 𝜁0𝑐

are given by:

𝜁0𝑙
= 𝑡 − 𝑉𝑟

2ℰ𝜁3𝑠
− 1

ℰ
√

−2ℰ
arctan ( 𝑉𝑟

𝑠 +
√

−2ℰ
) (6)

𝜁0𝑐
= 𝜁0𝑙

− 𝑎3/2𝜑 (7)

where 𝑉𝑟 is the radial velocity, 𝑠 the pseudo-transverse velocity, and 𝜁3 the inverse pseudo
angular-momentum, to be introduced in the next section. The differential equations are:

d𝜁0𝑙

d𝜑
= 𝑎3/2 [1 + dℰ

d𝜑
(6𝑎 arctan ( 𝑉𝑟

𝑘4 + 𝑘3
) + 𝑘1) + ( 𝑓𝑟

𝜁3𝑠
− 2𝑅) 𝑘2] (8)

d𝜁0𝑐

d𝜑
= 𝑎3/2 [dℰ

d𝜑
(6𝑎 arctan ( 𝑉𝑟

𝑘4 + 𝑘3
) − 3𝑎𝜑 + 𝑘1) + ( 𝑓𝑟

𝜁3𝑠
− 2𝑅) 𝑘2] (9)

where dℰ
d𝜑 is the rate-of-change of the total energy and 𝑓𝑟 the radial component of the

perturbing acceleration. 𝑘1−4 are relations that simplify the notation and are defined to be:

𝑘1 =
√

𝑎𝑉𝑟
𝑠2 (𝜁3 + 𝑠

𝑘4
+ 2𝑘3

𝜁3
+ 1) 𝑘2 = 1

𝑠2 (𝑘4
𝜁3

+ 𝑘3
𝑘4

+ 𝑉 2
𝑟

𝑘4𝑠
)

𝑘3 = 𝜁1 cos 𝜑 + 𝜁2 sin 𝜑 𝑘4 = 𝜁3 +
√

−2ℰ

Shape and orientation As mentioned before the set 𝜁1−7 can be split up into elements
concerning the shape and dynamics 𝜁1−3, and the orientation of the orbital plane 𝜁4−7. The
first three elements are obtained by introducing the generalised orbital element 𝜁3 = ℎ̃−1,
from which 𝜁1 and 𝜁2 follow as integration constants. The remaining four constants of
motion 𝜁4−7 describe the orientation and are closely related to quaternions.
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The ODEs of the elements with respect to the independent parameter are
d𝜁1
d𝜑

= sin 𝜑
𝑠

( 𝑓𝑟
𝜁3𝑠

− 2𝑅) − ( 𝑠
𝜁3

+ 1) cos 𝜑d𝜁3
d𝜑

(10)

d𝜁2
d𝜑

= cos 𝜑
𝑠

(2𝑅 − 𝑓𝑟
𝜁3𝑠

) − ( 𝑠
𝜁3

+ 1) sin 𝜑d𝜁3
d𝜑

(11)

d𝜁3
d𝜑

= − 1
𝑠4 [𝑉𝑟𝜁3𝑠 (2𝑅 − 𝜁3𝑠

𝑠 + 𝜁3

∂𝑅
∂𝜁3

) + 𝑉𝑡𝑃𝑡 + ∂𝑅
∂𝑡

] (12)

d𝜁4
d𝜑

= 1
𝑠

[ 𝑓𝑛
𝜁3𝑠𝑉𝑡

(𝜁7 cos 𝛥𝜑 − 𝜁6 sin 𝛥𝜑) + 𝜁5(𝑉𝑡 − 𝑠)] (13)

d𝜁5
d𝜑

= 1
𝑠

[ 𝑓𝑛
𝜁3𝑠𝑉𝑡

(𝜁6 cos 𝛥𝜑 + 𝜁7 sin 𝛥𝜑) − 𝜁4(𝑉𝑡 − 𝑠)] (14)

d𝜁6
d𝜑

= −1
𝑠

[ 𝑓𝑛
𝜁3𝑠𝑉𝑡

(𝜁5 cos 𝛥𝜑 − 𝜁4 sin 𝛥𝜑) − 𝜁7(𝑉𝑡 − 𝑠)] (15)

d𝜁7
d𝜑

= −1
𝑠

[ 𝑓𝑛
𝜁3𝑠𝑉𝑡

(𝜁4 cos 𝛥𝜑 + 𝜁5 sin 𝛥𝜑) + 𝜁6(𝑉𝑡 − 𝑠)] (16)

where the pseudo-transverse 𝑠, transverse 𝑉𝑡, and radial velocity 𝑉𝑟 are given by

𝑠 = 𝜁3 + 𝜁1 cos 𝜑 + 𝜁2 sin 𝜑 (17)

𝑉𝑡 =
√

𝑠2 − 2𝑅 (18)
𝑉𝑟 = 𝜁1 sin 𝜑 − 𝜁2 cos 𝜑 (19)

It is important to note that 𝛥𝜑 in Eqs.(̇13-16) represents the difference between the
current and initial value 𝛥𝜑 = 𝜑 − 𝜑0, and not the step size. The initial value of 𝜑0 can
be arbitrarily chosen when the initial Dromo state is constructed. A common choice for 𝜑0
is the initial true anomaly 𝜑0 = 𝜈0 or just 𝜑0 = 0.

Alternatively, when the perturbations are mainly conservative, the third element 𝜁3 can
be replaced by the total energy ℰ, replacing Eq. (12) by

dℰ
d𝜑

= 1
𝜁3𝑠2 (𝑢𝑃𝑟 + 𝑃𝑡

√
𝑠2 − 2𝑅 + ∂𝑅

∂𝑡
) (20)

where 𝜁3 can then be obtained through the following equation:

𝜁3 = √𝜁2
1 + 𝜁2

2 − 2ℰ (21)

In conclusion, only eight first-order ODEs need to be numerically integrated with Dromo.
Different options for a set of eight equations have been present, these are: one related to
time (Eq. (3), (8), or (9)), three related to the shape of the orbit (Eqs. (10), (11), and (12)
or (20)) and four related to the orientation of the orbital plane (Eqs. (13) to (16)). The
Dromo state thus consists of the following eight elements

= [𝑡 or 𝜁0𝑙
or 𝜁0𝑐

, 𝜁1, 𝜁2, 𝜁3 or ℰ, 𝜁4, 𝜁5, 𝜁6, 𝜁7]

By default (unless stated otherwise) the following set is used: = [𝜁0𝑐
, 𝜁1, 𝜁2, ℰ, 𝜁4, 𝜁5, 𝜁6, 𝜁7].
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METHODOLOGY

The formulation of Dromo presented has a number of practical limitations. These limi-
tations are generally true for any regularised method. To facilitate the implementation of
these methods, the issue of propagating to a final time is considered. Although this treat-
ment considers time, the methodology presented can in fact be used for finding the final
state at any value of one of the dependent parameters, such as the orbital altitude (in case
of re-entry) or any of the instantaneous orbital elements.

Fixed time propagation

Although the time transformation has many advantages, the major drawback is that
time has become a dependent parameter and the relationship between both is non-linear.
Therefore, propagating to a certain epoch is not straightforward. The final value of the
independent parameter 𝜑𝑓 corresponding with the final physical time 𝑡𝑓 can only be obtained
numerically. This presents a problem for applications that require the state at an exact
time, e.g., orbit determination.

The approximations of the final independent parameter and dependent time are in this
section denoted as 𝜑̂𝑓 and ̂𝑡𝑓.

The procedure of propagating to a final time has a number of drawbacks. First of all,
finding the corresponding 𝜑̂𝑓 can be computationally expensive, as will be demonstrated.
Secondly, since 𝜑̂𝑓 is only approximated and thus differs from the true unknown value, also
the integrated ̂𝑡𝑓 will not be exactly the desired 𝑡𝑓. Lastly, a small variation (or error) in
𝜑̂𝑓 can lead to a very large deviation in ̂𝑡𝑓. This sensitivity is illustrated in Figure 1, where
a change of about 0.35 rad in 𝜑 leads to a variation in 𝑡 of almost 250 000 s. The error in
time translates into additional state errors. It is therefore important to find a very good
approximation in a computationally lean manner.

Three different solutions to this problem exist, which will be explained in more detail.
Each method will be treated based on their implications on function evaluations, accuracy,
and ease of implementation. To gain better insight in the differences in accuracy, the error
in the final time can be split up as follows:

𝜀 = |𝑡𝑓 − ̂𝑡𝑓| = 𝜀𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 + 𝜀𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 + 𝜀𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 (22)

where 𝜀𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 is the numerical error due to the numerical integration (containing both
round-off and truncation errors) and is dependent on the integration scheme. 𝜀𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛
is the error due to approximation of 𝜑̂𝑓 by the different methods, such that |𝑡(𝜑̂𝑓)−𝑡(𝜑𝑓)| =
𝜀𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛. This error stems from convergence tolerance (if iterations are required). It
has to be noted that this tolerance should be set individually from the integrator tolerances.
Finally, 𝜀𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 is an additional error introduced by the methods in finding 𝜑̂𝑓. The last
source is not immediately intuitive, but will become clear. The error due to estimation is
defined as:

𝜀𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = | ̂𝑡𝑓(integrator + estimator(𝑡𝑓)) − ̂𝑡𝑓(integrator(𝜑̂𝑓))| (23)

where the first ̂𝑡𝑓 is the result of the integration and estimation procedure combined and the
second ̂𝑡𝑓 is when the integration is repeated (without the estimation procedure) using the
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estimate of the independent parameter 𝜑̂𝑓. The difference between these two is the impact
of the estimation.

Householder Householder methods are a class of iterative root-finding algorithms. New-
ton’s method (sometimes also Newton-Raphson) and Halley’s method are first- and second-
order Householder members, respectively. Newton only uses the function gradient, while
Halley uses additional second-order derivative information. Halley’s method is considered
to be more stable and generally faster, as it has a cubic upper bound for the rate of con-
vergence, as opposed to quadratic for Newton’s method. The scheme is initialised with an
initial guess 𝜑̂𝑓0

, which is updated after each iteration until converged to within a set tol-
erance. The iterative schemes for Newton’s and Halley’s method are given by:

𝜑̂𝑓𝑛+1
= 𝜑̂𝑓𝑛

− 𝑓
𝑓 ′ 𝜑̂𝑓𝑛+1

= 𝜑̂𝑓𝑛
− 2𝑓𝑓 ′

2𝑓 ′2 − 𝑓𝑓 ′′
(24, 25)

where the derivatives are found using Eqs.(̇3) and (17):

𝑓 = 𝑡𝑛 − 𝑡𝑓 (26)

𝑓 ′ = d𝑓
d𝜑̂

= 1
𝜁3𝑠2 (27)

𝑓 ′′ = d2𝑓
d𝜑̂2 =

−2(−𝜁1 sin 𝜑̂𝑓𝑛
+ 𝜁2 cos 𝜑̂𝑓𝑛

)
𝜁3𝑠3 (28)

This approach is both very accurate and expensive. As the integration is restarted for
each new guess 𝜑̂𝑓, the error due to estimation is not present (𝜀𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0). However,
the number of function evaluations can be high: roughly equal to the number of iterations
times number of evaluations necessary to propagate a single trajectory. The number of
iterations depends on the quality of the initial guess and the required level of convergence.
Also, convergence is not guaranteed.

Bisection The second method uses bisection to successively approximate the 𝜑𝑓. This is
a simple root-finding method that repeatedly bisects an interval. As the maximum bisection
interval is limited to the maximum step size, the state is first propagated until it overshoots
the target 𝑡𝑓. The step is then reverted to the last point corresponding to 𝜑𝑛, such that
𝑡𝑛 < 𝑡𝑓. The step size is subsequently halved and the procedure repeated.

The approach is very simple to implement. The convergence is linear, which is slower
than the other methods. However, the procedure requires no derivatives, initial guesses, and
restarts. Therefore, requiring only a moderate number of additional function evaluations.
However, the accuracy is only moderate, as additional numerical errors are introduced in
the process, through the increasingly smaller steps.

Hermite interpolation The third and final method solves 𝜑𝑓 using interpolation. Out of
the many different choices that exist (e.g., Lagrange polynomials, splines, etc.), a Hermite
polynomial is chosen. Hermite polynomials (as opposed to Lagrange/Newton polynomials)
use higher-order derivative information. Here, only the states and its first-order derivatives
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are used. Since this method is very akin to an extrapolation polynomial used by numerical
integrators, the error made will be of the same order as the integration error, making it
suitable for combination with numerical integration.

The first integration step after overshoot 𝑡𝑛 > 𝑡𝑓 is denoted 𝜑𝑛. Along with the state at
𝜑𝑛, a number of additional points before and after are used. The interpolation of time is
illustrated in Figure 1.
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Figure 1: Hermite interpolation of the final
time after 49.5 revolutions for problem 1.
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Figure 2: Improper interpolation of the fi-
nal time due to too large step-size using time
elements.

The values of the independent and dependent parameter are reduced according to Eqs.(2̇9)
and (30). For the independent parameter, it is essential for a good fit that the values are
around zero. Moreover, the final time is subtracted, such that the polynomial 𝑝(𝜑̄𝑓) = 0
needs to be solved.

𝜑̄𝑖 = 𝜑𝑖 − 𝜑𝑛 ̄𝑡𝑖 = 𝑡𝑖 − 𝑡𝑓 (29, 30)

The polynomial can then be generated using the set of points { ̄𝑡𝑖, ̇𝑡, 𝜑̄𝑖}. The usual way
would be to (numerically) compute the divided-difference table, from which the polynomial
can then easily be found. However, it is proposed to solve the expression for the polynomial
coefficients analytically as a function of the data points, such that c = 𝑓(̄, t̄, ̇t), making
it more efficient to set-up the polynomial. Note that one such set of expression for the
coefficients needs to be found for each integration order. The polynomial then becomes:

̄𝑡 = 𝑝(𝜑̄; c) =
𝑁

∑
𝑖=1

𝑐𝑖𝜑̄𝑖−1 (31)

The roots of the polynomial are then solved to find potential candidates for 𝜑̄𝑓. For
polynomials of up to order four, closed-form analytic solutions exist. For higher orders, the
roots must be solved numerically, which are found as the eigenvalues of the polynomial’s
companion matrix, defined as:
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𝐶(c) =
⎡
⎢
⎢
⎢
⎣

0 0 ⋯ 0 −𝑐1
1 0 ⋯ 0 −𝑐2
0 1 ⋯ 0 −𝑐3
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 −𝑐𝑁

⎤
⎥
⎥
⎥
⎦

(32)

The number of roots (real and imaginary, including multiplicity) is equal to the polyno-
mial order. To find the correct root, knowledge about the solution is applied to eliminate
candidates. The following conditions are used to identify the proper root:

𝜑̄𝑓 ∈ ℝ 𝜑̄𝑛−1 < 𝜑̄𝑓 < 0 (33, 34)

The final independent variable is then 𝜑̂𝑓 = 𝜑𝑛 + 𝜑̄𝑓.
The method is both accurate and efficient. The accuracy of the solution is driven by the fit

of the polynomial alone, as the solving of the eigenvalues is exact (only round-off). Similarly,
the estimation error is of the same order as the numerical errors for a single step, thus
𝜀𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 ≈ 0. The method uses even less evaluations than bisection. Lastly, no initial
guess is required and the method can be applied for any parameter. The implementation,
however, is perhaps the most involved of the three methods.

If the parameter is part of the state, the step-size controller of the integrator ensures that
a good spacing of data points for the polynomial is obtained. However, this can not be
guaranteed when the parameter is derived from the state (in case of a time element), result-
ing in improper interpolation of the final time. Figure 2 illustrates the problem of improper
interpolation. Although the polynomial satisfies the state and derivative constraints, the
solution for 𝜑̂𝑓 is off. In such a case, time (instead of a time element) can be integrated
around the solution. Note that the error of the interpolation can be easily obtained by in-
tegrating from 𝜑𝑛−1 to the estimated 𝜑̂𝑓. Using this error, the step size can be modified
and the quality interpolation checked in a trial-and-error approach.

EXPERIMENTAL SET-UP

The general set-up of the numerical simulation is explained below, followed by an intro-
duction to the numerical integration techniques used. Finally the test problems are given.
Dromo (with the proposed solution) is tested for the following cases:

Case A: Time-state options investigates the effects of using different options for time.

Case B: Fixed-time propagation compares the three solutions for propagating to a
fixed end in terms of time and positional accuracy.

Case C: Force modelling analyses the difference between conservative and dissipative
perturbations.

Case D: Numerical integrators investigates different numerical integration techniques.

Case E: Different orbits compares the effect of orbits for the test problems.
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General set-up

The aim is to make the comparison between the regularised and non-regularised methods
as realistic as possible. The following two important aspects ensure this.

First, Runge-Kutta Dormand-Prince 5(4) (DOPRI5) used for all methods by default,
unless stated otherwise. This integrator features step-size control, even though regularised
methods could propagate with high accuracy using a fixed step-size integrator, through
their analytic step-size control. However, doing so for the non-regularised methods would
result in very poor performance and an unfair comparison.

Second, all problems are integrated to a fixed final time, not a pre-computed final value of
the independent parameter that corresponds to the final time. This distinction is important,
as it was already discussed, that integration to a final time is not straightforward with
regularised methods. Usually for benchmarking the final independent parameter is first
estimated with very high precision and the state is then propagated to the final value
of the independent parameter instead. This approach, however, does not accurately reflect
the computational costs associated with finding the final value 𝜑𝑓.

Error and reference position

For each of the problems the orbit is integrated to the final time to obtain the final state
for various numerical tolerances between 10−6 and 10−14. The final state is converted to
the Cartesian position r and then compared against a reference position r. This comparison
highlights the computational effort required to reach a certain accuracy (and vica-versa).
The error is computed as the minimum between the absolute and relative error:

𝜀 = min (‖r − r‖, ∥ r − r

max(|r|, |r|)
∥) (35)

A reference solution is not available for most tests. Unless the motion is unperturbed,
the solution has to be found numerically. For this, a solution is computed using Dromo
with the householder approach. The tolerance chosen is at least one order lower than the
minimum tolerance for the test.

Force modelling

In addition to two-body unperturbed motion, the effects of the Earth’s oblateness and
atmosphere are analysed. The models, introduced in more detail below, can be considered
crude. However, they represent two fundamental ingredients, namely conservative potential-
derived and dissipative perturbations. Therefore, they are representative for more advanced
models and will suffice in highlighting differences among the methods.

Oblateness Variations in the Earth’s gravity field can be expressed as both an perturbing
acceleration f or potential 𝑅. Accounting only oblateness, the potential and acceleration
are given by [13]:

11



𝑅𝐽2
=

𝐽2𝜇𝑅2
𝐸

2𝑟3 (1 − 3 sin2 𝑖 sin2(𝜈 + 𝜔)) (36)

f𝐽2
= −𝑅𝐽2

(37)

To facilitate comparison with literature, the following constants were assumed [2]: 𝜇 =
398 601 km3 s−2, 𝑅𝐸 = 6371.22 km, and 𝐽2 = 1.082 65 × 10−3.

Drag acceleration Due to the presence of an atmosphere the satellite will experience drag,
dissipating the satellite’s orbital energy. A simple tabulated exponential density model,
based on USSA1976 and CIRA1972, is assumed [21]. A spherical Earth is assumed and the
co-rotation neglected. The drag acceleration is:

f𝑑𝑟𝑎𝑔 = 1
2

𝜌v⊺v
𝑆𝐶𝐷

𝑚
(38)

where the constants 𝐶𝐷 = 2.2 and 𝑆/𝑚 = 0.01 m2 kg−1 are assumed [10].

Test problems

The analysis is executed for several test problems. Table 2 gives an overview. By default
Problem 1 is used for Cases A to D, for Case E all three problems are analysed. The initial
positions are given in Table 3.

Table 2: Overview of the orbits of the different test problems.

# 𝑎 [km] 𝑒 [−] 𝑖 [°] 𝑇 [d] Revs [−] Note

1 136 000 0.95 30.0 100 17.43 “Example 2” [2]
2 6777 0.0012 51.4 2 31.12 ISS *

3 29 600 0.0005 55.2 20 34.57 GSAT0101 †

Table 3: Initial position and velocity of different test problems.

# 𝑥0 [km] 𝑦0 [km] 𝑧0 [km] 𝑣𝑥0
[km s−1] 𝑣𝑦0

[km s−1] 𝑣𝑧0
[km s−1]

1 0 −5888.9727 3400 10.691 338 0 0
2 −276.511 4783.577 4790.565 6.899 16 2.172 63 −2.554 63
3 −6836.512 2513.848 −28 685.790 −0.990 54 −3.533 21 −0.071 89

Problem 1 was originally introduced as “Example 2” by Stiefel and Scheifele [2] and is
commonly used throughout literature [3, 8, 10]. Problem 2 is a near-circular low-earth
orbit (LEO). The orbit of the ISS (orbit 925) is used as a reference. Of course, for the
propagation in LEO a more accurate atmospheric model is necessary. Nonetheless, the

*http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/orbit/ISS/
SVPOST.html, accessed on 02/20/2015.

†https://www.space-track.org/basicspacedata/query/class/tle_latest/ORDINAL/1/NORAD_CAT_
ID/37846/orderby/TLE_LINE1ASC/format/tle, accessed on 02/20/2015.
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exponential model that was selected will show the effect of a dissipative force. Finally,
Problem 3 uses the orbit of the first Galileo satellite (GSAT0101) as a reference. The TLE
at epoch 15 051.142 848 34 is used for the initial conditions. As the satellite is in MEO, it
will not experience the effects of the atmosphere or oblateness as much as a LEO satellite.
Nonetheless, both the drag and 𝐽2 perturbations are modelled.

Integrators

Save for unperturbed motion, the EOMs need to be integrated numerically. The choice
of integrator also has a large influence on the accuracy and efficiency. Distinctly different
types of integrators are analysed to assess their performance. These include a single-step
(DOPRI), multi-step (Adams-Bashforth-Adams-Moulton or ABAM), and Taylor-Series in-
tegrators (TSI).

For each integrator, only the absolute and relative tolerances are changed to obtain dif-
ferent data points of the accuracy versus the number of function evaluations. The tolerances
in each case are set equal for each parameter, such that 𝜀𝑎𝑏𝑠𝑖

= 𝜀𝑟𝑒𝑙𝑖
= 𝜀∀𝑖.

Dormand-Prince 5(4) DOPRI is a member of the Runge-Kutta (RK) family and con-
venient for adaptive step-size. RK techniques approximate a Taylor-series extrapolation
of a function by evaluating the first derivative at different points within the interval and
do not rely on previous solutions. Unfortunately, the truncation error is not available as
part of the solution and requires the evaluation of another RK method of one order less or
higher [22]. DOPRI5(4) is a fifth-order integration method, where the fourth-order is used
for error control. The method is implemented in Matlab as ode45, and is used as is.

Adams-Bashforth-Adams-Moulton Multi-step methods take advantage of the history pre-
viously evaluated steps. In case of predictor schemes the new step is predicted using only
the history available. A corrector uses the derivative at this new point to further improve
the solution. ABAM, uses the AB predictor and AM corrector. The difference between the
predicted and corrected values offers a measure of the error at each step. Only two deriva-
tives are evaluated for each step, independent of the order. However, these methods are
more complex to program and require special starting methods [23]. The integrator is im-
plemented in Matlab as ode113, with adaptive order and step size based on the theory of
Shampine and Gordon [24].

Taylor Series Integration TSI uses higher-order derivatives to expand the solution around
the known point. In theory, a solution can be represented by an infinite series. In prac-
tice, the series is truncated after a desirable order 𝐾. TSI is very efficient as large steps can
be made. However, it is difficult to implement. Automatic derivation up to any order is
achieved by rewriting the EOMs using recursion formulas. To derive the recursion formulas,
additional state variables need to be introduced. Due to this overhead, TSI is only more
efficient when a problem can be solved many times [25]. Complications arise from models
that are discrete/discontinuous (e.g., look-up tables). Most models can only be made piece-
wise continuous. The derivatives are therefore only valid within a certain region, limiting
the maximum step size to its boundary. The value of the independent parameter at the
boundaries need to be found using a root-finding algorithm. Interpolation of models can
either be done once (for simple models) or on a need basis. Derivatives of numerical (black-
box) models can be obtained through finite differencing. Scott2008 presents a practical
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introduction of the subject.

The order 𝐾 and step size ℎ need to be controlled to keep the truncation error in bounds,
while maximising computational efficiency. An estimate of the truncation error is generally
obtained from the higher-order terms. The following step-size controller, which computes
the Lagrange remainder using the last two terms, is used [26]:

ℎ0 = (min
∀𝑖

{ 𝜀𝑖
|(𝑥𝑖)𝐾−1|

})
1

𝐾−1

ℎ1 = exp [ 1
𝐾 − 1

ln (min
∀𝑖

{ 𝜀𝑖
|(𝑥𝑖)𝐾−1| + 𝐾|(𝑥𝑖)𝐾|ℎ1

})]
(39)

The estimate for the step size can be iterated further (by obtaining ℎ2 by substituting
ℎ0 = ℎ1 etc.), but only the first iteration is applied. The order is assumed to be fixed
throughout the integration and is optimised for each tolerance.

Simplifications of the Atmospheric Modelling The simplify integrating with TSI, the fol-
lowing atmospheric model is assumed (for Case D only): 𝜌 = exp(−0.003 731 343 283 582 1ℎ−
29.702 507 460 603 904 1), giving a good fit for ℎ ≥ 800 km. The EOMs for the gravity with
oblateness (𝐽2) are taken from Bergsma and Mooij [26], with the following additionally de-
rived equations and recurrence relations:

𝑓4 = v⊺v (𝑓4)𝑘 =
𝑘

∑
𝑗=0

(v)⊺
𝑘 (v)𝑘−𝑗 (40, 41)

𝑣 = √𝑓4 (𝑣)𝑘 = 1
(𝑓4)0

𝑘
∑
𝑗=1

( 3𝑗
2𝑘

− 1) (𝑓4)𝑗(𝑣)𝑘−𝑗 (42, 43)

𝜌 = 𝑎 exp(−𝑏𝑟) (𝜌)𝑘 = 𝑎(−𝑏)𝑘
𝑘

∑
𝑗=1

𝑗(𝑟)𝑗(𝜌)𝑘−𝑗
𝑘

(44, 45)

𝑓5 = 𝑣𝜌 (𝑓5)𝑘 =
𝑘

∑
𝑗=0

(𝑣)𝑗(𝜌)𝑘−𝑗 (46, 47)

f = −1
2

𝑓5v
𝑆𝐶𝐷

𝑚
(f)𝑘 = 1

2
𝑆𝐶𝐷

𝑚

𝑘
∑
𝑗=0

(𝑓5)𝑗(v)𝑘−𝑗 (47, 48)

where 𝑓4 and 𝑓5 represent some auxiliary introduced variables and 𝑎 = exp(𝑏𝑅𝐸−29.702 507 460 603 904 1)
and 𝑏 = 0.003 731 343 283 582 1.

RESULTS AND DISCUSSION

Each of the cases is analysed and their results are presented and discussed.

Case A: Time-state options

The linear and constant time element have been presented. The numerical properties of
the three options has been extensively studied by Baù and Bombardelli [11]. In general,
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it is found that the time elements outperform the physical time on all test problems. As
expected, for circular orbits with only 𝐽2, all three options perform roughly equal. Similarly,
they converge with higher number of function evaluations. For these two cases the physical
time can be considered, as the equations are much simpler.

The time elements were found to be most accurate (up to 3-6 orders in magnitude) for
low number of function evaluations, where the accuracy of the time 𝑡 is dominating the
integration. The evolution of all three options over two full orbits on Problem 1 are shown
in Figure 3. As can be seen from the plot the physical (non-dimensional) time exhibits a
sigmoid-type curve for every revolution. For this specific problem, this behaviour is driven
by variations in the radius 𝑟. However, looking at Eqs. (3) and (4), a similar trend occurs
for variations of the orbital energy. As time is a strictly increasing function, it is by def-
inition hard to approximate with a polynomial and therefore difficult to integrate. Only
when the orbit is circular (and mainly conservatively perturbed) or the integration steps
become small, a good fit can be obtained.
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Figure 3: Evolution of different time ele-
ments (Case A) for two revolutions on prob-
lem 1.
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proximation methods (Case B).

Case B: Fixed-time propagation

Three solutions for propagating to a fixed time have been proposed. Figure 4 shows the
error made in approximating final time (solid lines) and in position (dashed lines) as a
function of the number of function evaluations.

The ability of the householder method to estimate time correctly is constant, regardless of
the number of function evaluations. This is to be expected considering the earlier discussion
about how the iterative scheme decouples the error of estimation from the solution. The
bisection and Hermite interpolating methods show only a small difference. Both approach
the accuracy of the householder method as the number of function evaluations increases.
As the step size goes down with increasingly stringent tolerances, the integration steps get
smaller and thus closer to the value of 𝑡𝑓 that is to be estimated, therefore reducing the
impact of estimation.
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Looking at the position error (dashed lines), the householder method actually performs
worst, due to its inefficiency. The difference between the other two methods is again rela-
tively small. However in terms of function evaluations the Hermite interpolation method is
between 7 (for high accuracy) to 24 % (for low accuracy) more efficient than bisection.

Case C: Force modelling

Next, the effects of different perturbations are investigated. First, the unperturbed motion
is analysed, followed by perturbed motion due to the Earth’s oblateness (𝐽2), and finally
the atmospheric drag is added. The results are shown in Figure 5.
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Figure 5: Comparison of different force
models (Case C) on test problem 1.
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Figure 6: Comparison of different integra-
tion methods (Case D) on test problem 1.

For the unperturbed case (solid line), Dromo clearly performs best and the function eval-
uations and precision are hardly impacted by the tolerances settings. Ideally the precision
would be perfect, as the elements are not impacted by the integration as their derivatives
are zero and thus remain constant. The small error that is present and the associated num-
ber of function evaluations stem from the approximation of 𝜑𝑓 and any numerical errors
during conversion from and to Cartesian coordinates.

It can further be seen that MEE is about an order more accurate compared to Cowell,
for a given number of function evaluations. The errors originate from the integration of the
true longitude alone (as the other five are constant).

For the second case (𝐽2, dashed line), again Dromo performs best. Compared to MEEs,
Dromo has a better accuracy and is more efficient. It is remarkable that for a low number
of function evaluations the other methods do not even offer a useful solution, Moreover, for
Dromo the minimum error remains unaffected, though the number of function evaluations
has increased. This shows the benefit of Dromo’s approach to treating the perturbation as
a conservative potential, in which the total energy does not change. The other two methods
show a shift upwards, signifying a reduction in accuracy for a given number of function
evaluations.

Lastly, for the case with both a conservative and a non-conservative perturbation (𝐽2 +
drag, dotted line), all methods show a reduction in accuracy. Especially Dromo shows a
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significantly reduced accuracy. Nonetheless, the method still performs best, especially with
a low number of function evaluations, where it is over two orders more accurate than MEE.

Case D: Numerical integrators

The fully-perturbed problem is analysed for three different variable step-size integrators:
DOPRI5(4), ABAM, and TSI. Figure 6 shows the results. The differences among the
integrators are most profound for the more stringent tolerance settings (higher evaluations).
ABAM is found to be more efficient than DOPRI5(4) (or any other RK-family integrator)
on this problem, especially for high-accuracy applications. For Dromo and MEE there is
only an improvement in function evaluations. ABAM for Cowell’s method shows better
performance at a reduction in accuracy. This is likely due to the large variation of the
states for this method, as ABAM relies on previous states.

Only results for TSI of Cowell’s method were obtained. It can be seen that TSI performs
significantly better than DOPRI and approaches ABAM for the lower number of function
evaluations. Increasing the tolerance above 10−13 yields no additional benefits in terms
of accuracy at the expense of evaluations. Three factors however have to be taken into
account when viewing these results. First, the atmospheric model was further simplified
for the comparison. If more advanced models are used, the step size has to be limited
further. Secondly, the dimension of the Cartesian TSI state is 22 as opposed to 6 for the
regular implementation, which has not been taken into account in the number of function
evaluations. Lastly, finding the optimal order for TSI was found to be non-trivial. No
order controller gave consistent results on this problem and was thus optimised for each
run, giving:

K⋆([10−7, 10−8, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14, 10−15])
=[14 , 16 , 16 , 16 , 18 , 20 , 18 , 18 , 19 ]

Case E: Different orbits

The fully perturbed case of Problem 1, given by Figure 5, was already analysed. Prob-
lems 2 and 3 are also analysed. Their results are shown in Figures 7 and 8, respectively.
Comparing Problem 2 to Problem 1, Dromo and MEE are much closer to each other. For
the lower number of function evaluations, Dromo is about 1-2 orders more accurate than
MEE, compared to 2-4 orders for the fully perturbed case of Problem 1. For a higher num-
ber of function evaluations two methods even converge and reach the same minimum error.

As can be seen from the figures, Dromo also performs best for these problems. Both
Dromo and MEE achieve a maximum accuracy, after which higher tolerances do not result
in increased accuracy. This is caused by the total round-off error becoming dominant over
the decrease in the total truncation error. Dromo compares favourably in this respect
against MEE, by achieving a lower minimum error of around one order less.

Both Problems 2 and 3, compared to 1, show Dromo and MEE closer to each other. From
this it can be concluded that MEE performs relatively worse on highly elliptic orbits. The
convergence of Dromo to MEE, which is present in Problem 2, but not in 3 indicates that
this should be attributed to atmospheric drag.
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Figure 7: Comparison of methods on cir-
cular LEO (Case E, Problem 2).
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Figure 8: Comparison of methods on cir-
cular MEO (Case E, Problem 3).

CONCLUSIONS

The time elements have very interesting properties and prove a useful addition to the
Dromo formulation, especially for low-accuracy computations on problems where the orbital
radius and/or energy vary.

Two methods for propagating to a fixed epoch have been proposed, namely bisection
and Hermite interpolation. Both methods work very well. In terms of accuracy they
approach the classical Householder method for stringent tolerance settings. Although their
absolute accuracy lacks behind the iterative scheme, overall their performance in terms of
positional accuracy over function evaluations is better in all cases. The differences between
bisection and Hermite interpolation are largest in the low-accuracy region, where Hermite
interpolation is up to 25 % more efficient in terms of function evaluations.

Dromo dominates the other methods for all cases and problems, especially in terms of
computational effeciency. Cowell’s method performed worst on all problems. Dromo and
MEE performed roughly equal for a small portion of the regime with high accuracy and
number of function evalutions on Problem 2 (LEO with drag). Dromo is found to be very
efficient, finding relatively accurate solutions for a limited number of evaluations. Similarly,
Dromo is able to propagate more accurately than other methods, demonstrating a higher
maximum accuracy, at a fraction of the computational cost of the other methods.

The choice of numerical integrators has an effect on performance. ABAM works very well
with VOP formulations. TSI outperforms ABAM and DOPRI5(4) for Cowell’s method.
However, a number of practical issues have been presented that have to be addressed,
especially expansion for discontinuous models and order control. TSI for Dromo should
provide an additional gain in performance; it remains to be seen how much additional
overhead is introduced. The number of additional state variables that needs to be introduced
is large, due to Dromo’s more complex ODEs.

In conclusion, it is demonstrated that Dromo, through the proposed adaptations, can be
successfully applied to real orbit problems, providing significant benefits in both accuracy
and number of functions evaluations. These findings should hold true for regularised prop-
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agation methods in general. The advantage in terms of computational efficiency is most
significant for low- to medium-accuracy applications. For the propagation of LEO satellites,
Dromo offers an improvement in accuracy (for a given number of function evaluations) of up
to seven orders in magnitude, compared to the standard Cowell’s method using Cartesian
coordinates. The proposed method is recommended for all orbit problems that have been
analysed. Especially great potential is foreseen for highly demanding applications, such as
the propagation of a large catalog of objects, where currently (semi-)analytic techniques are
employed.

ACKNOWLEDGEMENT

This work is supported by the European Office for Aerospace Research and Development
(EOARD), grant FA9550-14-1-0344.

REFERENCES

[1] F. R. Hoots and R. G. France, “The Future of Artificial Satellite Theories”, Celestial
Mechanics and Dynamical Astronomy, Vol. 66, No. 1, 1997, pp. 51–60.

[2] E. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics, Springer-Verlag,
1971.

[3] V. R. Bond and M. C. Allman, Modern Astrodynamics, Princeton University Press,
1996.

[4] J. Waldvogel, “Quaternions and the perturbed Kepler problem”, Celestial Mechanics
and Dynamical Astronomy, Vol. 95, No. 1-4, Aug. 2006, pp. 201–212.

[5] T. Fukushima, “New Two-body Regularization”, The Astronomical Journal, Vol. 133, No. 1,
2007, pp. 1–10.

[6] T. Fukushima, “Numerical Comparison of Two-body Regularizations”, The Astro-
nomical Journal, Vol. 133, No. 6, 2007, pp. 2815–2824.

[7] J. Waldvogel, “Fundamentals of Regularization in Celestial Mechanics and Linear
Perturbation Theories”, Seminar for Applied Mathematics, 2007.

[8] J. Peláez, J. M. Hedo, and P. R. de Andrés, “A Special Perturbation Method in
Orbital Dynamics”, Celestial Mechanics and Dynamical Astronomy, Vol. 97, No. 2,
2007, pp. 131–150.

[9] J. Waldvogel, “Quaternions for Regularizing Celestial Mechanics – the Right Way”,
Celestial Mechanics and Dynamical Astronomy, Vol. 102 2008, pp. 149–162.

[10] G. Baù, C. Bombardelli, and J. Peláez, “A New Set of Integrals of Motion to Propagate
the Perturbed Two-body Problem”, Celestial Mechanics and Dynamical Astronomy,
Vol. 116, No. 1, 2013, pp. 53–78.

[11] G. Baù and C. Bombardelli, “Time Elements for Enhanced Performance of the Dromo
Orbit Propagator”, The Astronomical Journal, Vol. 148, No. 3, 2014, pp. 43–58.

[12] R. A. Broucke and P. J. Cefola, “On the Equinoctial Orbit Elements”, Celestial Me-
chanics, Vol. 5, No. 3, 1972, pp. 303–310.

[13] K. F. Wakker, Fundamentals of Astrodynamics, Institutional Repository Delft Uni-
versity of Technology, 2015.

19



[14] P. Kustaanheimo and E. Stiefel, “Perturbation Theory of Kepler Motion based on
Spinor Regularization”, Journal für die Reine und Angewandte Mathematik, Vol. 1965, No. 218,
1965, pp. 204–219.

[15] C. A. Burdet, “Regularization of the Two Body Problem”, Zeitschrift für angewandte
Mathematik und Physik, Vol. 18, No. 3, 1967, pp. 434–438.

[16] J. Ferràndiz, “A General Canonical Transformaiton Increasing the Number of Vari-
ables with Application to the Two-body Problem”, Celestial mechanics, Vol. 41, No. 1968,
1988, pp. 343–357.

[17] D. J. Jezewski, “A Comparative Study of Netwonian, Kustaanheim/Stiefel, and Sper-
ling/Burdet Optimal Trajectories”, Celestial Mechanics, Vol. 12, No. 3, 1975, pp. 297–
315.

[18] S. P. Altman, “A Unified State Model of Orbital Trajectory and Attitude Dynamics”,
Celestial mechanics, Vol. 6, No. 4, 1972, pp. 425–446.

[19] V. Vittaldev, E. Mooij, and M. C. Naeije, “Unified State Model theory and application
in Astrodynamics”, Celestial Mechanics and Dynamical Astronomy, Vol. 112, No. 3,
2012, pp. 253–282.

[20] V. R. Bond and V. Hanssen, “The Burdet Formulation of the Perturbed Two-body
Problem with Total Energy as an Element”, NASA-JSC-Internal Note, No. 73-FM-86
(JSC-O8004), 1973.

[21] D. A. Vallado, Fundamentals of Astrodynamics and Applications, Third Ed, Micro-
cosm Press, 2007.

[22] M. Allione, A. Blackford, J.C.Mendez, and M.M.Wittouck, “The N-Body Problem
and Special Perturbation Techniques”, Guidance, Flight Mechanics and Trajectory
Optimization, Volume VI, National Aeronautics and Space Administration, 1968.

[23] R. Hamming, Numerical methods for scientists and engineers, Dover Publishers, 1987.
[24] L. F. Shampine and M. K. Gordon, “Local Error and Variable Order Adams Codes”,

Applied Mathematics and Computation, Vol. 1, No. 1, 1975, pp. 47–66.
[25] G. Corliss and Y. F. Chang, “Solving Ordinary Differential Equations Using Taylor

Series”, ACM Transactions on Mathematical Software, Vol. 8, No. 2, 1982, pp. 114–
144.

[26] M. C. W. Bergsma and E. Mooij, “Application of Taylor Series Integration to Reentry
Problems”, AIAA Science and Technology Forum and Exposition, Unpublished, 2016.

20


	Introduction
	Background
	Regularised propagation
	Dromo and comparison of regularised methods
	Dromo formulation
	Time transformation
	Shape and orientation


	Methodology
	Fixed time propagation
	Householder
	Bisection
	Hermite interpolation


	Experimental set-up
	General set-up
	Error and reference position
	Force modelling
	Oblateness
	Drag acceleration

	Test problems
	Integrators
	Dormand-Prince 5(4)
	Adams-Bashforth-Adams-Moulton
	Taylor Series Integration
	Simplifications of the Atmospheric Modelling


	Results and discussion
	Case A: Time-state options
	Case B: Fixed-time propagation
	Case C: Force modelling
	Case D: Numerical integrators
	Case E: Different orbits

	Conclusions
	Acknowledgement
	References

